Improved physical stability for co-amorphous simvastatin and glipizide combinations prepared by co-milling

نویسندگان

  • Korbinian Löbmann
  • Clare Strachan
  • Holger Grohganz
  • Thomas Rades
  • Ossi Korhonen
  • Riikka Laitinen
چکیده

In this study, mechanical activation (balland cryomilling) was successfully applied to obtain coamorphous mixtures of two BCS class II drugs, simvastatin (SVS) and glipizide (GPZ). This pharmacologically relevant combination of two drugs could produce a promising candidate for formulations intended for combination therapy of metabolic disorders. The co-amorphous SVS-GPZ mixtures (molar ratios 2:1, 1:1 and 1:2) were characterized with respect to their thermal properties, possible molecular interactions, dissolution properties and physical stability, and compared to the behaviour of pure amorphous forms and their physical mixtures. Flory-Huggins interaction parameter predicted the absence of favourable SVS-GPZ interactions and thus immiscibility of the components. Nonetheless, formation of single phase co-amorphous mixtures with mixture ratios of 2:1, 1:1 and 1:2 was detected by differential scanning calorimetry (DSC). The observed single, concentration dependent Tgs were found to be lower than predicted by the Gordon-Taylor equation indicating absence of intermolecular interactions between the two drugs which was verified by Fourier transform infrared spectroscopy (FTIR) spectral data analysis. By formation of co-amorphous single-phase mixtures only the dissolution rate of GPZ could be improved. The co-amorphous mixtures showed improved storage stability compared to the pure amorphous forms and the amorphous physical mixtures. It was concluded that this was attributable to the molecular level mixing of SVS with GPZ upon milling and GPZ is acting as an anti-plasticizer in these mixtures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energ...

متن کامل

Evaluation of Some Methods for Preparing Glipizide-β-Cyclodextrin Inclusion Complexes

      Glipizide has been found to form inclusion complexes with β-cyclodextrin (β-CD) in solution and in solid state. The present study was undertaken to determine a suitable method for scaling up glipizide-β-CD inclusion complex formation and to evaluate the effect of some parameters on the efficiency of complexation. The solid inclusion complexes of glipizide and β-CD were prepared at a molar...

متن کامل

Co-amorphous drug-amino acid formulations

Poorly water soluble drugs are considered a major challenge within development of drug formulations for oral delivery. Several formulations strategies exist to overcome this issue including salt formation and solid dispersions to name a few. Recently, a new formulation approach was introduced combining two drug molecules or a drug and an amino acid to form a so-called co-amorphous system. Sever...

متن کامل

Improving Co-Amorphous Drug Formulations by the Addition of the Highly Water Soluble Amino Acid, Proline

Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous sy...

متن کامل

Effect of Ni on Amorphization of Ti-Cu-Ni Ternary alloys Prepared by Mechanical alloying

Amorphous alloys has been taken into consideration because of their unique properties and are nominated as the future engineering materials. In this research, the effect of Ni and milling time on amorphization process and thermal stability of Ti50Cu50-xNix(x=10, 15, 25 at%) alloy system were investigated. The evolution of amorphization during milling, thermal stability and subsequent heat treat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012